

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS (MEI)

Mechanics 1

MONDAY 21 MAY 2007

Morning Time: 1 hour 30 minutes

4761/01

Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \text{ m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

[2]

[3]

Section A (36 marks)

1 Fig. 1 shows four forces in equilibrium.

Fig. 1

(i) Find the value of *P*. [3] (ii) Hence find the value of Q.

- A car passes a point A travelling at 10 m s⁻¹. Its motion over the next 45 seconds is modelled as 2 follows.
 - The car's speed increases uniformly from 10 m s^{-1} to 30 m s^{-1} over the first 10 s. •
 - Its speed then increases uniformly to 40 m s^{-1} over the next 15 s. •
 - The car then maintains this speed for a further 20 s at which time it reaches the point B. ٠
 - (i) Sketch a speed-time graph to represent this motion. [3]
 - (ii) Calculate the distance from A to B.
 - (iii) When it reaches the point B, the car is brought uniformly to rest in T seconds. The total distance from A is now 1700 m. Calculate the value of T. [2]

3 Fig. 3 shows a system in equilibrium. The rod is firmly attached to the floor and also to an object, P. The light string is attached to P and passes over a smooth pulley with an object Q hanging freely from its other end.

- (i) Why is the tension the same throughout the string? [1]
- (ii) Calculate the force in the rod, stating whether it is a tension or a thrust. [3]
- 4 Two trucks, A and B, each of mass $10\,000$ kg, are pulled along a straight, horizontal track by a constant, horizontal force of P N. The coupling between the trucks is light and horizontal. This situation and the resistances to motion of the trucks are shown in Fig. 4.

The acceleration of the system is 0.2 m s^{-2} in the direction of the pulling force of magnitude *P*.

(i)	Calculate the value of <i>P</i> .	[3]
(-)		[2]

Truck A is now subjected to an extra resistive force of 2000 N while P does not change.

- (ii) Calculate the new acceleration of the trucks. [2]
- (iii) Calculate the force in the coupling between the trucks. [2]

5 A block of weight 100 N is on a rough plane that is inclined at 35° to the horizontal. The block is in equilibrium with a horizontal force of 40 N acting on it, as shown in Fig. 5.

Calculate the frictional force acting on the block.

- 6 A rock of mass 8 kg is acted on by just the two forces $-80\mathbf{k}$ N and $(-\mathbf{i} + 16\mathbf{j} + 72\mathbf{k})$ N, where i and j are perpendicular unit vectors in a horizontal plane and k is a unit vector vertically upward.
 - (i) Show that the acceleration of the rock is $\left(-\frac{1}{8}\mathbf{i}+2\mathbf{j}-\mathbf{k}\right)\mathrm{ms}^{-2}$. [2]

The rock passes through the origin of position vectors, O, with velocity (i - 4j + 3k) m s⁻¹ and 4 seconds later passes through the point A.

(ii)	Find the position vector of A.	[3]
(iii)	Find the distance OA.	[1]

(iv) Find the angle that OA makes with the horizontal. [2]

[4]

Section B (36 marks)

Fig. 7 is a sketch of part of the velocity-time graph for the motion of an insect walking in a straight line. Its velocity, $v \text{ m s}^{-1}$, at time *t* seconds for the time interval $-3 \le t \le 5$ is given by

Fig. 7

(i)	Write down the velocity of the insect when $t = 0$.	[1]
(ii)	Show that the insect is instantaneously at rest when $t = -2$ and when $t = 4$.	[2]
(iii)	Determine the velocity of the insect when its acceleration is zero.	
	Write down the coordinates of the point A shown in Fig. 7.	[5]
(iv)	Calculate the distance travelled by the insect from $t = 1$ to $t = 4$.	[5]
(v)	Write down the distance travelled by the insect in the time interval $-2 \le t \le 4$.	[1]
(vi)	How far does the insect walk in the time interval $1 \le t \le 5$?	[3]

- 8 A ball is kicked from ground level over horizontal ground. It leaves the ground at a speed of 25 m s^{-1} and at an angle θ to the horizontal such that $\cos \theta = 0.96$ and $\sin \theta = 0.28$.
 - (i) Show that the height, y m, of the ball above the ground t seconds after projection is given by $y = 7t 4.9t^2$. Show also that the horizontal distance, x m, travelled by this time is given by x = 24t. [3]
 - (ii) Calculate the maximum height reached by the ball. [2]
 - (iii) Calculate the times at which the ball is at half its maximum height.

Find the horizontal distance travelled by the ball between these times. [4]

- (iv) Determine the following when t = 1.25.
 - (A) The vertical component of the velocity of the ball.
 - (B) Whether the ball is rising or falling. (You should give a reason for your answer.)
 - (*C*) The speed of the ball.
- (v) Show that the equation of the trajectory of the ball is

$$y = \frac{0.7x}{576} \left(240 - 7x \right).$$

Hence, or otherwise, find the range of the ball.

[5]

[5]